Role of clinicoradiological correlation in evaluation of various demyelinating disorders: A Systematic review

Clinicoradiological Correlation in Demyelinating Disorders

Authors

  • Rohail Razzaq Royal Derby Hospital, Derby, GBR, United Kingdom Author https://orcid.org/0009-0000-0000-4050
  • Muhammad Hamza Khan Emergency Medicine/Physiology Department, Abbottabad International Medical Institute, Abbottabad, Pakistan Author
  • Hafiza Fajar Shabbir Pathology Department, Lahore Medical and Dental College, Lahore, Pakistan Author
  • Nimra Tauseef Internal Medicine Department, Fauji foundation Hospital Rawalpindi, Rawalpindi, Pakistan Author
  • Sadiqa Arshad Psychiatry Department, Mukhtar A. Sheikh Memorial Welfare Hospital (MASH), Multan, Pakistan Author
  • Muzammil Rasheed Bhutta Radiology Department, Shaukat Khanum Memorial Cancer Hospital Lahore, Pakistan Author

DOI:

https://doi.org/10.69750/dmls.01.04.041

Keywords:

Multiple Sclerosis, Neuromyelitis Optica spectrum disorder, Acute disseminated encephalomyelitis, MRI, Diffusion weighted imaging, Contrast enhanced, Progressive multifocal leukoencephalopathy, Osmotic demyelination syndrome, T2 weighted imaging, T1 weighted imaging.

Abstract

Background: There are mainly three types of white matter disorders resulting from defective myelination (dysmyelinating), destruction of myelin (demyelination) and decreased myelination (hypomyelinating). Each of these disorders require MRI and specific imaging for diagnosis. However, diagnosis of white matter disorders cannot solely rely on imaging.

Objective: In this review we aim to correlate clinical presentation, history, laboratory investigations, and imaging as a tool rather than diagnostic modality to highlight the importance of clinical and radiological collaboration to diagnose the exact disease process. We would specifically discuss variants of multiple sclerosis, acute disseminated encephalomyelitis, neuromyelitis Optica spectrum disorder, progressive multifocal leuckoencephalothy, and osmotic demyelination syndrome. This study also includes specific signs of different demyelination white matter disorders on MRI which are characteristic of that disease process. However, we also highlight what clinical correlation and investigations may further aid to confirm the diagnosis, prognosis and extent of disease progression.

Methods: In this review article we used Prisma guidelines we extracted studies where there was evidence of better patient outcome in terms of clinicoradiological collaboration in diagnosing various demyelinating white matter disorders.

Results: We found that timely diagnosis and better patient outcomes can be achieved if clinicians also take in accord their own clinical judgement and based on that order relevant radiological investigations resulting better clinician to clinician communication, judicious use of hospital resources and overall better outcome in disease process.

Conclusion: Our study concludes that solid clinical judgement, laboratory investigations along with radiological features of disease process would enhance clinical outcomes in terms of timely diagnosis, specific treatment and tracking disease prognosis.

Downloads

Download data is not yet available.

References

Kumar V, Abbas A, et al. Robbins and Cotran pathologic basis of disease. 8th ed. Philadelphia: Elsevier Saunders; 2005. doi:10.1002/path.17116001.

Sarbu N, Shih RY, Jones RV, Horkayne-Szakaly I, Oleaga L, Smirniotopoulos JG. White matter diseases with radiologic-pathologic correlation. Radiographics. 2016;36(5):1426–47. doi:10.1148/rg.2016160031.

Cheon JE, Kim IO, Hwang YS, et al. Leukodystrophy in children: a pictorial review of MR imaging features. Radiographics. 2002;22(3):461–76. doi:10.1148/radiographics.22.3.g02ma01461.

Prayson RA, Ahrendsen JT. Neuropathology review. 3rd ed. Cham: Springer; 2015.

Noseworthy JH. Progress in determining the causes and treatment of multiple sclerosis. Nature. 1999;399(6738 Suppl):A40–5. doi:10.1038/399a040.

Barkhof F. The clinico-radiological paradox in multiple sclerosis revisited. Curr Opin Neurol. 2002;15(3):239–45. doi:10.1097/00019052-200206000-00003.

Kendi AT, Tan FU, Kendi M, Huvaj S, Tellioğlu S. MR spectroscopy of cervical spinal cord in patients with multiple sclerosis. Neuroradiology. 2004;46:764–9. doi:10.1007/s00234-004-1231-1.

Sharma R. McDonald diagnostic criteria for multiple sclerosis. Radiopaedia.org. Available from: https://radiopaedia.org/articles/mcdonald-diagnostic-criteria-for-multiple-sclerosis-4.

Ebers GC. Randomized double-blind placebo-controlled study of interferon β-1a in relapsing/remitting multiple sclerosis. Lancet. 1998;352(9139):1498–504. doi:10.1016/S0140-6736(98)03334-0.

Lisanti CJ, Asbach P, Bradley WG. The ependymal “dot-dash” sign: an MR imaging finding of early multiple sclerosis. AJNR Am J Neuroradiol. 2005;26(8):2033–6. doi:10.53347/rID-57578.

Gawne-Cain ML, O'Riordan JI, Thompson AJ, Moseley IF, Miller DH. Multiple sclerosis lesion detection: comparison of fast FLAIR and conventional T2-weighted dual spin echo. Neurology. 1997;49(2):364–70. doi:10.1212/WNL.49.2.364.

Bagnato F, Jeffries N, Richert ND, Stone RD, Ohayon JM, McFarland HF, et al. Evolution of T1 black holes in multiple sclerosis. Brain. 2003;126(8):1782–9. doi:10.1093/brain/awg182.

Miller DH, Rudge P, Johnson G, Kendall BE, Macmanus DG, Moseley IF, et al. Serial gadolinium-enhanced MRI in multiple sclerosis. Brain. 1988;111(4):927–39. doi:10.1093/brain/111.4.927.

Zivadinov R, Leist TP. Clinical–MRI correlations in multiple sclerosis. J Neuroimaging. 2005;15:10S–21S. doi:10.1177/1051228405283291.

Pirko I, Lucchinetti CF, Sriram S, Bakshi R. Gray matter involvement in multiple sclerosis. Neurology. 2007;68(9):634–42. doi:10.1212/01.wnl.0000250267.85698.7a.

Grossman RI, Gonzalez-Scarano F, Atlas SW, Galetta S, Silberberg DH. Multiple sclerosis: gadolinium enhancement in MR imaging. Radiology. 1986;161(3):721–5. doi:10.1148/radiology.161.3.3786722.

Uriel A, Stow R, Johnson L, Varma A, du Plessis D, Gray F, et al. Tumefactive demyelination in HIV. Clin Infect Dis. 2010;51(10):1217–20. doi:10.1086/656812.

Abou Zeid N, Pirko I, Erickson B, Weigand SD, Thomsen KM, Scheithauer B, et al. DWI characteristics of biopsy-proven demyelinating lesions. Neurology. 2012;78(21):1655–62. doi:10.1212/WNL.0b013e3182574f66.

Sarbu N, Shih RY, Jones RV, Horkayne-Szakaly I, Oleaga L, Smirniotopoulos JG. White matter diseases with radiologic–pathologic correlation. Radiographics. 2016;36(5):1426–47. doi:10.1148/rg.201616003.

Pfleger R. Radiologically isolated syndrome. Radiopaedia.org. Available from: https://radiopaedia.org/articles/radiologically-isolated-syndrome.

Okuda DT, Mowry EM, Cree BA, Crabtree EC, Goodin DS, Waubant E, et al. Asymptomatic spinal cord lesions predict disease progression in RIS. Neurology. 2011;76(8):686–92. doi:10.1212/WNL.0b013e31820d8b1.

Wingerchuk DM, Banwell B, Bennett JL, Cabre P, Carroll W, Chitnis T, et al. International consensus criteria for NMOSD. Neurology. 2015;85(2):177–89. doi:10.1212/WNL.0000000000001729.

Dutra BG, da Rocha AJ, Nunes RH, Maia AC. Spectrum of MR findings in NMOSD. Radiographics. 2018;38(1):169–93. doi:10.1148/rg.2018170141.

Nakamura M, Misu T, Fujihara K, Miyazawa I, Nakashima I, Takahashi T, et al. Callosal lesions in NMO. Mult Scler. 2009;15(6):695–700. doi:10.1177/1352458509103301.

Kim HJ, Paul F, Lana-Peixoto MA, Tenembaum S, Asgari N, Palace J, et al. MRI characteristics of NMOSD: update. Neurology. 2015;84(11):1165–73. doi:10.1212/WNL.0000000000001367.

Kim W, Lee JE, Kim SH, Huh SY, Hyun JW, Jeong IH, et al. Cerebral cortex involvement in NMOSD. J Clin Neurol. 2016;12(2):188–93. doi:10.3988/jcn.2016.12.2.188.

Zalewski NL, Morris PP, Weinshenker BG, Lucchinetti CF, Guo Y, Pittock SJ, et al. Ring-enhancing spinal cord lesions in NMOSD. J Neurol Neurosurg Psychiatry. 2017;88(3):218–25.

Hynson JL, Kornberg AJ, Coleman LT, Shield L, Harvey AS, Kean MJ. Acute disseminated encephalomyelitis in children. Neurology. 2001;56(10):1308–12. doi:10.1212/WNL.56.10.1308.

Dale RC, de Sousa C, Chong WK, Cox TC, Harding B, Neville BG. ADEM vs MS in children. Brain. 2000;123(12):2407–22. doi:10.1093/brain/123.12.2407.

Bag AK, Curé JK, Chapman PR, Roberson GH, Shah R. JC virus infection of brain. AJNR Am J Neuroradiol. 2010;31(9):1564–76. doi:10.3174/ajnr.A2035.

Garrels K, Kucharczyk W, Wortzman G, Shandling M. PML: clinical and MR response. AJNR Am J Neuroradiol. 1996;17(3):597–600.

Wijburg MT, Witte BI, Vennegoor A, Roosendaal SD, Sanchez E, Liu Y, et al. MRI criteria for asymptomatic PML vs MS lesions. J Neurol Neurosurg Psychiatry. 2016;87(10):1138–45.

Bezuidenhout AF, Andronikou S, Ackermann C, du Plessis AM, Basson D, Bhadelia RA. “Barbell sign” in PML. J Comput Assist Tomogr. 2018;42(4):527–30.

Adra N, Goodheart AE, Rapalino O, Caruso P, Mukerji SS, González RG, et al. MRI shrimp sign in cerebellar PML. AJNR Am J Neuroradiol. 2021;42(6):1073–9.

Tan CS, Koralnik IJ. Expanded pathogenesis of JC virus infection. Lancet Neurol. 2010;9(4):425–36. doi:10.1016/S1474-4422(10)70040-5.

Ruzek KA, Campeau NG, Miller GM. Early diagnosis of CPM with DWI. AJNR Am J Neuroradiol. 2004;25(2):210–3.

Juergenson I, Zappini F, Fiaschi A, Tonin P, Bonetti B. Pontine & extrapontine myelinolysis imaging. Neurology. 2012;78(1):e1–2.

Nusbaum AO, Lu D, Tang CY, Atlas SW. Quantitative diffusion in MS lesions. AJR Am J Roentgenol. 2000;175(3):821–5. doi:10.2214/ajr.175.3.1750821.

Downloads

Crossmark - Check for Updates PlumX Metrics

Published

30-06-2024

How to Cite

Razzaq, R., Khan, M. H. ., Shabbir , H. F. ., Tauseef , N. ., Arshad , S. ., & Bhutta, M. R. . (2024). Role of clinicoradiological correlation in evaluation of various demyelinating disorders: A Systematic review: Clinicoradiological Correlation in Demyelinating Disorders. DEVELOPMENTAL MEDICO-LIFE-SCIENCES, 1(4), 43-53. https://doi.org/10.69750/dmls.01.04.041

Share