The Transformative Role of Nanoenzymes in the Diagnosis, Targeted Treatment, and Prognosis of Ovarian Cancer. A comprehensive review

Role of nano enzyme in diagnosis, treatment and prognosis of ovarian cancer

Authors

  • Ahmed Imran Institute of Molecular Biology and Biotechnology (IMBB),CRiMM, The University of Lahore, Lahore Pakistan Author
  • Aqsa Gulzar Institute of Molecular Biology and Biotechnology (IMBB),CRiMM, The University of Lahore, Lahore Pakistan. Author
  • Maryam Gulzar National Institute of Food Science and Technology (NIFSAT), University of Agriculture Faisalabad, Faisalabad,Pakistan Author
  • Shahrooz Basharat National Institute of Food Science and Technology (NIFSAT), University of Agriculture Faisalabad, Faisalabad,Pakistan Author
  • Faseeha Saman National Institute of Food Science and Technology (NIFSAT), University of Agriculture Faisalabad, Faisalabad,Pakistan Author
  • Ayesha Rana Sir Ganga Ram Hospital (SGRH), Lahore, Pakistan Author
  • Ishrat Nazar University of Okara, Okara, Pakistan Author
  • Sadia Ahmad National Institute of Food Science and Technology (NIFSAT), University of Agriculture Faisalabad, Faisalabad,Pakistan Author
  • Imsha Maryam National Institute of Food Science and Technology (NIFSAT), University of Agriculture Faisalabad, Faisalabad,Pakistan Author
  • Maham Gul Sher National Institute of Food Science and Technology (NIFSAT), University of Agriculture Faisalabad, Faisalabad,Pakistan Author

DOI:

https://doi.org/10.69750/dmls.01.010.076

Keywords:

Ovarian cancer, nanoenzymes, biosensors, nanotechnology, targeted therapy

Abstract

Ovarian cancer is one of the most aggressive and deadly gynaecological malignancies and remains frequently diagnosed at advanced stages because of its asymptomatic progression and the inherent limitations of current diagnostic tests. Nanoenzymes (a class of nanotechnology-based artificial enzymes) have great promise in addressing these challenges. Nanoenzymes greatly improve diagnostic sensitivity and specificity in biosensors including optical and electrochemical systems, with real-time and high-precision detection of key biomarkers such as CA-125, HE4, and mesothelin. The high accuracy of optical biosensors, including fluorescence and surface plasmon resonance (SPR) based technologies, for early-stage diagnosis, and the cost-effective, portable, and ultra-low detection limits of electrochemical biosensors make them attractive alternatives. Nanoenzyme-based drug delivery systems like liposomes, polymeric micelles, and Nanocapsules improve therapeutic outcomes by allowing targeted drug transport to tumor tissues, reducing systemic toxicity, and overcoming drug resistance in treatment. PEGylated liposomal doxorubicin (Doxil), a liposomal formulation, has been shown to have enhanced efficacy in platinum-resistant ovarian cancer, with reduced adverse effects. Further theranostic applications of metallic nanoparticles such as gold and iron oxide can be realized using targeted therapy and real-time imaging. These advancements come with their challenges, however, including biological barriers, systemic toxicity, and scalability before clinical translation. Interdisciplinary research, clinical validation, and the creation of regulatory frameworks for safety and efficacy are needed for future progress. Nanoenzymes offer promise to revolutionize the diagnosis and treatment of ovarian cancer with their potential to facilitate early detection, therapeutic precision, and patient outcome while filling the huge gaps in current clinical approaches.

Downloads

Download data is not yet available.

References

Shahid S, Khan A, Shahid W, Rehan M, Asif R, Nisar H, et al. Nanoenzymes: A radiant hope for the early diagnosis and effective treatment of breast and ovarian cancers. Int J Nanomedicine. 2024;19:5813–35. doi:10.2147/IJN.S460712

Deshwal A, Saxena K, Sharma G, Rajesh, Sheikh FA, Seth CS, et al. Nanozymes: Emerging applications in cancer diagnosis and therapeutics. Int J Biol Macromol. 2024;256(Pt1):128272. doi:10.1016/j.ijbiomac.2023.128272

He G, Mei C, Chen C, Liu X, Wu J, Deng Y, et al. Application and progress of nanozymes in antitumor therapy. Int J Biol Macromol. 2024;265:130960. doi:10.1016/j.ijbiomac.2024.130960

N P, Mehla S, Begum A, Chaturvedi HK, Ojha R, Hartinger C, et al. Smart nanozymes for cancer therapy. Adv Healthc Mater. 2023;12(25):2300768. doi:10.1002/adhm.202300768

Shahid S, Khan A, Shahid W, Rehan M, Asif R, Nisar H, et al. Nanoenzymes for early diagnosis and treatment of breast and ovarian cancers. Int J Nanomedicine. 2024;19:5813–35. doi:10.2147/IJN.S460712

Vengurlekar JR, Bhaware BB, Prasad T, Sarkar J. Nanomedicine’s transformative role in cancer treatment. In: Gautam V, Kumar R, Das Manandhar K, Kamble SC, editors. Nanomedicine: Innovations, Applications, and Breakthroughs. Cham: Springer; 2024. p. 59–105. doi:10.1007/978-3-031-72467-1_4

Zhu X, Xu N, Zhang L, Wang D, Zhang P. Multifunctional nanozymes for tumor diagnosis and therapy. Eur J Med Chem. 2022;238:114456. doi:10.1016/j.ejmech.2022.114456

Yu Y, Zhao W, Yuan X, Li R. Nanozymes for enhanced antitumor therapy. Front Chem. 2022;10:1090795. doi:10.3389/fchem.2022.1090795

Kaur P, Singh SK, Mishra MK, Singh S, Singh R. Nanotechnology for boosting ovarian cancer immunotherapy. J Ovarian Res. 2024;17(1):202. doi:10.1186/s13048-024-01507-z

Xiong R, Zhu X, Zhao J, Ling G, Zhang P. Nanozyme-mediated cascade system for tumor diagnosis and therapy. Small Methods. 2024;8(10):2301676. doi:10.1002/smtd.202301676

Singh R, Sharma A, Saji J, Umapathi A, Kumar S, Daima HK. Smart nanomaterials for cancer diagnosis and treatment. Nano Converg. 2022;9(1):21. doi:10.1186/s40580-022-00313-x

Wu Y, Darland DC, Zhao JX. Nanozymes—biosensing targets. Sensors. 2021;21(15):5201. doi:10.3390/s21155201

Tian H, Zhang T, Qin S, Huang Z, Zhou L, Shi J, et al. Nanoparticle strategies to enhance cancer therapy. J Hematol Oncol. 2022;15(1):132. doi:10.1186/s13045-022-01320-5

Xiao Q, Zhang Y, Zhao A, Duan Z, Yao J. Nanomaterials in esophageal cancer diagnosis and treatment. Front Bioeng Biotechnol. 2023;11:1268454. doi:10.3389/fbioe.2023.1268454

Tavares V, Marques IS, Melo IG, Assis J, Pereira D, Medeiros R. Ovarian cancer management review. Int J Mol Sci. 2024;25(3):1845. doi:10.3390/ijms25031845

Chauhan DS, Prasad R, Srivastava R, Jaggi M, Chauhan SC, Yallapu MM. Diagnostics and nanotechnology in COVID-19. Bioconjug Chem. 2020;31(9):2021–45. doi:10.1021/acs.bioconjchem.0c00323

Andreani T, Cheng R, Elbadri K, Ferro C, Menezes T, dos Santos MR, et al. Natural compound-based nanomedicines for cancer therapy. Drug Deliv Transl Res. 2024;14(10):2845–916. doi:10.1007/s13346-024-01649-z

Zhang S, Zhang R, Yan X, Fan K. Nanozyme-based artificial organelles. Small. 2022;18:e202202294. doi:10.1002/smll.202202294

Akpe V, Shiddiky MJA, Kim TH, Brown CL, Yamauchi Y, Cock IE. Nanozyme iron–gold cancer biomarkers. J R Soc Interface. 2020;17(167):20200180. doi:10.1098/rsif.2020.0180

Kashyap BK, Singh VV, Solanki MK, Kumar A, Ruokolainen J, Kesari KK. Smart nanomaterials in cancer theranostics. ACS Omega. 2023;8(16):14290–320. doi:10.1021/acsomega.2c07840

Abolhasani Zadeh F, Shahhosseini E, Rasoolzadegan S, Özbolat G, Farahbod F. Au nanoparticles in the diagnosis and treatment of ovarian cancer. Nanomed Res J. 2022;7(1):1–18. doi:10.22034/nmrj.2022.01.001

Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial reactive oxygen species and ROS-induced ROS release. Physiol Rev. 2014;94(3):909–50. doi:10.1152/physrev.00026.2013

Kumari S, Badana AK, G MM, G S, Malla R. Reactive oxygen species in cancer survival. Biomark Insights. 2018;13:1177271918755391. doi:10.1177/1177271918755391

Tang JLY, Moonshi SS, Ta HT. Nanoceria strategies for cancer treatment. Cell Mol Life Sci. 2023;80(2):46. doi:10.1007/s00018-023-04694-y

Shuja A, Abubakar M, Shahbaz MN, Shahid S, Mukhtiar M. Nano enzymes in diagnosis and treatment of GIT cancer. Dev Med Life Sci. 2024;1(1):32–41. doi:10.69750/dmls.01.01.015

Li Q, Wu T, Fan X, Guo X, Jiang W, Fan K. Multifaceted nanozymes for synergistic antitumor therapy. Mater Des. 2022;224:111430. doi:10.1016/j.matdes.2022.111430

Henderson E, Huynh G, Wilson K, Plebanski M, Corrie S. Nanoparticles for ovarian cancer detection and imaging. Biomedicines. 2021;9(11):1554. doi:10.3390/biomedicines9111554

Shuja N. Nanotechnology in cancer diagnosis and treatment. Dev Med Life Sci. 2024;1(1):1. doi:10.69750/dmls.01.01.032

Ge H, Du J, Zheng J, Xu N, Yao Q, Long S, et al. MoS₂-based sonosensitizer reversing resistant ovarian tumors. Chem Eng J. 2022;446:137040. doi:10.1016/j.cej.2022.137040

Yang Z, Guo J, Wang L, Zhang J, Ding L, Liu H, et al. Nanozyme-enhanced electrochemical biosensors. Small. 2024;20(14):2307815. doi:10.1002/smll.202307815

Lv J, Yue R, Liu H, Du H, Lu C, Zhang C, et al. Enzyme-activated nanomaterials for MRI and tumor therapy. Coord Chem Rev. 2024;510:215842. doi:10.1016/j.ccr.2024.215842

Hassan FS, El-Fakharany EM, El-Maradny YA, Saleh AK, El-Sayed MH, Mazi W, et al. Microbial enzymes in cancer therapy. Int J Biol Macromol. 2024;277:134535. doi:10.1016/j.ijbiomac.2024.134535

Yang Y, Huang Q, Xiao Z, Liu M, Zhu Y, Chen Q, et al. Nanomaterial-based biosensors for early ovarian cancer diagnosis. Mater Today Bio. 2022;13:100218. doi:10.1016/j.mtbio.2022.100218

Khan AS, Sahu SK, Dash SK, Mishra T, Padhan AR, Padhan D, et al. Nanozymes for biosensing and theranostics. Chem Biodivers. 2024;21(10):e202401326. doi:10.1002/cbdv.202401326

Torres-Herrero B, Armenia I, Ortiz C, de la Fuente JM, Betancor L, Grazú V. Nanomaterials in enzyme therapy. J Control Release. 2024;372:619–47. doi:10.1016/j.jconrel.2024.06.035

Tang L, Li J, Pan T, Yin Y, Mei Y, Xiao Q, et al. Carbon nanoplatforms for cancer therapy and diagnosis. Theranostics. 2022;12(5):2290–321. doi:10.7150/thno.69628

Jia X, Wang Y, Qiao Y, Jiang X, Li J. Redox metabolism regulation using nanomaterials. Chem Soc Rev. 2024;53(23):11590–656. doi:10.1039/D4CS00404C

Wu X, Li Y, Wen M, Xie Y, Zeng K, Liu YN, et al. Nanocatalysts modulating antitumor immunity. Chem Soc Rev. 2024;53(5):2643–92. doi:10.1039/D3CS00673E

Andoh V, Ocansey DKW, Naveed H, Wang N, Chen L, Chen K, et al. Nanocomposites in cancer diagnosis and treatment. Int J Nanomedicine. 2024;19:6099–126. doi:10.2147/IJN.S471360

Chen M, Xu T, Song L, Sun T, Xu Z, Zhao Y, et al. Nanotechnology-based gas delivery system in cancer. Theranostics. 2024;14(14):5461–91. doi:10.7150/thno.98884

Shin J, Kang N, Kim B, Hong H, Yu L, Kim J, et al. One-dimensional nanomaterials for cancer therapy and diagnosis. Chem Soc Rev. 2023;52(13):4488–514. doi:10.1039/D2CS00840H

Li R, Qian J, Zhu X, Tao T, Zhou X. Nanomolecular machines in precision medicine for neoplastic diseases. Biochim Biophys Acta Mol Basis Dis. 2024;1870(8):167486. doi:10.1016/j.bbadis.2024.167486

Liu S, Liu Z, Lei H, Miao YB, Chen J. Programmable nanomodulators for precision tumor metabolism therapy. Adv Healthc Mater. 2024;2403019. doi:10.1002/adhm.202403019

Mohajer F, Mirhosseini-Eshkevari B, Ahmadi S, Ghasemzadeh MA, Mohammadi Ziarani G, Badiei A, et al. Advanced nanosystems for cancer therapeutics. ACS Appl Nano Mater. 2023;6(9):7123–49. doi:10.1021/acsanm.3c00859

Liu Y, Jia D, Li L, Wang M. Nanomedicine and biomaterials for endometrial regeneration. Int J Nanomedicine. 2024;19:8285–308. doi:10.2147/IJN.S473259

Chen P, Zhang P, Shah NH, Cui Y, Wang Y. Inorganic sonosensitizers for sonodynamic therapy. Int J Mol Sci. 2023;24(15):12001. doi:10.3390/ijms241512001

Fu J, Cai W, Pan S, Chen L, Fang X, Shang Y, et al. Nanotechnology applications in sepsis. ACS Nano. 2024;18(11):7711–38. doi:10.1021/acsnano.3c10458

Desai N, Rana D, Pande S, Salave S, Giri J, Benival D, et al. Membrane-coated nanosystems in cancer theranostics. Pharmaceutics. 2023;15(6):1677. doi:10.3390/pharmaceutics15061677

Zhao J, Xia K, He P, Wei G, Zhou X, Zhang X. Nucleic acid-based cancer biomarkers and biosensors. Coord Chem Rev. 2023;497:215456. doi:10.1016/j.ccr.2023.215456

Budiman A, Rusdin A, Wardhana YW, Puluhulawa LE, Cindana Mo’o FR, Thomas N, et al. Functionalized mesoporous silica enhancing antioxidant activity. Antioxidants. 2024;13(8):936. doi:10.3390/antiox13080936

Nasir A, Rehman MU, Khan T, Husn M, Khan M, Khan A, et al. Nanotechnology-assisted photodynamic therapy for neurological disorders. Artif Cells Nanomed Biotechnol. 2024;52(1):84–103. doi:10.1080/21691401.2024.2304814

Li J, Zhao J, Tan T, Liu M, Zeng Z, Zeng Y, et al. Nanoparticle drug delivery for glioma. Int J Nanomedicine. 2020;15:2563–82. doi:10.2147/IJN.S243223

Gharehbaba AM, Omidi Y, Barar J, Eskandani M, Adibkia K. Janus nanoparticles in cancer therapy. TrAC Trends Anal Chem. 2024;178:117822. doi:10.1016/j.trac.2024.117822

Xu S, Xu H, Wang W, Li S, Li H, Li T, et al. Role of collagen in cancer. J Transl Med. 2019;17(1):309. doi:10.1186/s12967-019-2058-1

Sun L, Liu H, Ye Y, Lei Y, Islam R, Tan S, et al. Smart nanoparticles for cancer therapy. Signal Transduct Target Ther. 2023;8(1):418. doi:10.1038/s41392-023-01642-x

Doghish AS, El-Husseiny AA, Abdelmaksoud NM, El-Mahdy HA, Elsakka EGE, Abdel Mageed SS, et al. Signaling pathways and miRNAs in esophageal cancer. Pathol Res Pract. 2023;246:154529. doi:10.1016/j.prp.2023.154529

Ouyang J, Xie A, Zhou J, Liu R, Wang L, Liu H, et al. Minimally invasive nanomedicine for therapy and imaging. Chem Soc Rev. 2022;51(12):4996–5041. doi:10.1039/D1CS01148K

Huang H, Zheng Y, Chang M, Song J, Xia L, Wu C, et al. Ultrasound-based micro/nanosystems in biomedicine. Chem Rev. 2024;124(13):8307–72. doi:10.1021/acs.chemrev.4c00009

Driva TS, Schatz C, Haybaeck J. PI3K/AKT/mTOR pathway in endometriosis-associated ovarian carcinoma. Biomolecules. 2023;13(8):1253. doi:10.3390/biom13081253

Xiang X, Pang H, Ma T, Du F, Li L, Huang J, et al. Microbubble destruction with Fe-MOF enzyme-mimic nanoparticles. J Nanobiotechnology. 2021;19(1):92. doi:10.1186/s12951-021-00835-2

Hu Q, Zuo H, Hsu JC, Zeng C, Tian Z, Sun Z, et al. Nanomedicine to combat resistance to energy-based therapies. Adv Mater. 2024;36(5):2308286. doi:10.1002/adma.202308286

Wang K, Mao W, Song X, Chen M, Feng W, Peng B, et al. Reactive X-species nanomedicine. Chem Soc Rev. 2023;52(20):6957–7035. doi:10.1039/D2CS00435F

Sharma M, Bakshi AK, Mittapelly N, Gautam S, Marwaha D, Rai N, et al. Innovative strategies to overcome cancer drug resistance. J Control Release. 2022;346:43–70. doi:10.1016/j.jconrel.2022.04.007

Li X, Ma Z, Wang H, Shi Q, Xie Z, Yu J. Copper-based MOFs for cancer diagnosis and therapy. Coord Chem Rev. 2024;514:215943. doi:10.1016/j.ccr.2024.215943

Bravo-Vázquez LA, Méndez-García A, Rodríguez AL, Sahare P, Pathak S, Banerjee A, et al. Nanotechnologies for miRNA-based cancer therapeutics. Front Bioeng Biotechnol. 2023;11:1208547. doi:10.3389/fbioe.2023.1208547

Chang M, Dong C, Huang H, Ding L, Feng W, Chen Y. Nanobiomimetic medicine. Adv Funct Mater. 2022;32(32):2204791. doi:10.1002/adfm.202204791

Lewandowska H, Wójciuk K, Karczmarczyk U. Metal nanozymes in cellular homeostasis regulation. Appl Sci. 2021;11(19):9019. doi:10.3390/app11199019

Wang M, Liu H, Fan K. Signal amplification strategies in nanozyme biosensors. Small Methods. 2023;7(11):2301049. doi:10.1002/smtd.202301049

Xiong H, Hu P, Zhang M, Li Y, Ning Z. Nanozyme-enhanced lateral flow assays. Microchem J. 2024;206:111602. doi:10.1016/j.microc.2024.111602

Zhang D, Wang G, Ma N, Yuan Z, Dong Y, Huang X, et al. Cell membrane-based biomimetic nano-delivery systems. Adv Ther. 2024;7(2):2300304. doi:10.1002/adtp.202300304

Chen Z, Chen L, Lyu TD, Weng S, Xie Y, Jin Y, et al. Targeted mitochondrial nanomaterials. Acta Biomater. 2024;186:1–29. doi:10.1016/j.actbio.2024.08.008

Xu G, Li J, Zhang S, Cai J, Deng X, Wang Y, et al. Two-dimensional biomaterials for tumor microenvironment immunotherapy. Nano TransMed. 2024;3:100045. doi:10.1016/j.ntm.2024.100045

Son MH, Park SW, Sagong HY, Jung YK. Electrochemical and optical biosensors for cancer biomarkers. BioChip J. 2023;17(1):44–67. doi:10.1007/s13206-022-00089-6

Downloads

Crossmark - Check for Updates PlumX Metrics

Published

31-12-2024

How to Cite

Imran, A., Gulzar, A. ., Gulzar, M. ., Basharat , S., Saman, F. ., Rana, A. ., Nazar, I. ., Ahmad, S. ., Maryam, I., & Sher, M. G. . . (2024). The Transformative Role of Nanoenzymes in the Diagnosis, Targeted Treatment, and Prognosis of Ovarian Cancer. A comprehensive review: Role of nano enzyme in diagnosis, treatment and prognosis of ovarian cancer. DEVELOPMENTAL MEDICO-LIFE-SCIENCES, 1(10), 3-14. https://doi.org/10.69750/dmls.01.010.076

Share