The Transformative Role of Nanoenzymes in the Diagnosis, Targeted Treatment, and Prognosis of Ovarian Cancer. A comprehensive review
Role of nano enzyme in diagnosis, treatment and prognosis of ovarian cancer
DOI:
https://doi.org/10.69750/dmls.01.010.076Keywords:
Ovarian cancer, nanoenzymes, biosensors, nanotechnology, targeted therapyAbstract
Ovarian cancer is one of the most aggressive and deadly gynaecological malignancies and remains frequently diagnosed at advanced stages because of its asymptomatic progression and the inherent limitations of current diagnostic tests. Nanoenzymes (a class of nanotechnology-based artificial enzymes) have great promise in addressing these challenges. Nanoenzymes greatly improve diagnostic sensitivity and specificity in biosensors including optical and electrochemical systems, with real-time and high-precision detection of key biomarkers such as CA-125, HE4, and mesothelin. The high accuracy of optical biosensors, including fluorescence and surface plasmon resonance (SPR) based technologies, for early-stage diagnosis, and the cost-effective, portable, and ultra-low detection limits of electrochemical biosensors make them attractive alternatives. Nanoenzyme-based drug delivery systems like liposomes, polymeric micelles, and Nanocapsules improve therapeutic outcomes by allowing targeted drug transport to tumor tissues, reducing systemic toxicity, and overcoming drug resistance in treatment. PEGylated liposomal doxorubicin (Doxil), a liposomal formulation, has been shown to have enhanced efficacy in platinum-resistant ovarian cancer, with reduced adverse effects. Further theranostic applications of metallic nanoparticles such as gold and iron oxide can be realized using targeted therapy and real-time imaging. These advancements come with their challenges, however, including biological barriers, systemic toxicity, and scalability before clinical translation. Interdisciplinary research, clinical validation, and the creation of regulatory frameworks for safety and efficacy are needed for future progress. Nanoenzymes offer promise to revolutionize the diagnosis and treatment of ovarian cancer with their potential to facilitate early detection, therapeutic precision, and patient outcome while filling the huge gaps in current clinical approaches.
Downloads
References
Shahid S, Khan A, Shahid W, Rehan M, Asif R, Nisar H, et al. Nanoenzymes: A radiant hope for the early diagnosis and effective treatment of breast and ovarian cancers. Int J Nanomedicine. 2024;19:5813–35. doi:10.2147/IJN.S460712
Deshwal A, Saxena K, Sharma G, Rajesh, Sheikh FA, Seth CS, et al. Nanozymes: Emerging applications in cancer diagnosis and therapeutics. Int J Biol Macromol. 2024;256(Pt1):128272. doi:10.1016/j.ijbiomac.2023.128272
He G, Mei C, Chen C, Liu X, Wu J, Deng Y, et al. Application and progress of nanozymes in antitumor therapy. Int J Biol Macromol. 2024;265:130960. doi:10.1016/j.ijbiomac.2024.130960
N P, Mehla S, Begum A, Chaturvedi HK, Ojha R, Hartinger C, et al. Smart nanozymes for cancer therapy. Adv Healthc Mater. 2023;12(25):2300768. doi:10.1002/adhm.202300768
Shahid S, Khan A, Shahid W, Rehan M, Asif R, Nisar H, et al. Nanoenzymes for early diagnosis and treatment of breast and ovarian cancers. Int J Nanomedicine. 2024;19:5813–35. doi:10.2147/IJN.S460712
Vengurlekar JR, Bhaware BB, Prasad T, Sarkar J. Nanomedicine’s transformative role in cancer treatment. In: Gautam V, Kumar R, Das Manandhar K, Kamble SC, editors. Nanomedicine: Innovations, Applications, and Breakthroughs. Cham: Springer; 2024. p. 59–105. doi:10.1007/978-3-031-72467-1_4
Zhu X, Xu N, Zhang L, Wang D, Zhang P. Multifunctional nanozymes for tumor diagnosis and therapy. Eur J Med Chem. 2022;238:114456. doi:10.1016/j.ejmech.2022.114456
Yu Y, Zhao W, Yuan X, Li R. Nanozymes for enhanced antitumor therapy. Front Chem. 2022;10:1090795. doi:10.3389/fchem.2022.1090795
Kaur P, Singh SK, Mishra MK, Singh S, Singh R. Nanotechnology for boosting ovarian cancer immunotherapy. J Ovarian Res. 2024;17(1):202. doi:10.1186/s13048-024-01507-z
Xiong R, Zhu X, Zhao J, Ling G, Zhang P. Nanozyme-mediated cascade system for tumor diagnosis and therapy. Small Methods. 2024;8(10):2301676. doi:10.1002/smtd.202301676
Singh R, Sharma A, Saji J, Umapathi A, Kumar S, Daima HK. Smart nanomaterials for cancer diagnosis and treatment. Nano Converg. 2022;9(1):21. doi:10.1186/s40580-022-00313-x
Wu Y, Darland DC, Zhao JX. Nanozymes—biosensing targets. Sensors. 2021;21(15):5201. doi:10.3390/s21155201
Tian H, Zhang T, Qin S, Huang Z, Zhou L, Shi J, et al. Nanoparticle strategies to enhance cancer therapy. J Hematol Oncol. 2022;15(1):132. doi:10.1186/s13045-022-01320-5
Xiao Q, Zhang Y, Zhao A, Duan Z, Yao J. Nanomaterials in esophageal cancer diagnosis and treatment. Front Bioeng Biotechnol. 2023;11:1268454. doi:10.3389/fbioe.2023.1268454
Tavares V, Marques IS, Melo IG, Assis J, Pereira D, Medeiros R. Ovarian cancer management review. Int J Mol Sci. 2024;25(3):1845. doi:10.3390/ijms25031845
Chauhan DS, Prasad R, Srivastava R, Jaggi M, Chauhan SC, Yallapu MM. Diagnostics and nanotechnology in COVID-19. Bioconjug Chem. 2020;31(9):2021–45. doi:10.1021/acs.bioconjchem.0c00323
Andreani T, Cheng R, Elbadri K, Ferro C, Menezes T, dos Santos MR, et al. Natural compound-based nanomedicines for cancer therapy. Drug Deliv Transl Res. 2024;14(10):2845–916. doi:10.1007/s13346-024-01649-z
Zhang S, Zhang R, Yan X, Fan K. Nanozyme-based artificial organelles. Small. 2022;18:e202202294. doi:10.1002/smll.202202294
Akpe V, Shiddiky MJA, Kim TH, Brown CL, Yamauchi Y, Cock IE. Nanozyme iron–gold cancer biomarkers. J R Soc Interface. 2020;17(167):20200180. doi:10.1098/rsif.2020.0180
Kashyap BK, Singh VV, Solanki MK, Kumar A, Ruokolainen J, Kesari KK. Smart nanomaterials in cancer theranostics. ACS Omega. 2023;8(16):14290–320. doi:10.1021/acsomega.2c07840
Abolhasani Zadeh F, Shahhosseini E, Rasoolzadegan S, Özbolat G, Farahbod F. Au nanoparticles in the diagnosis and treatment of ovarian cancer. Nanomed Res J. 2022;7(1):1–18. doi:10.22034/nmrj.2022.01.001
Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial reactive oxygen species and ROS-induced ROS release. Physiol Rev. 2014;94(3):909–50. doi:10.1152/physrev.00026.2013
Kumari S, Badana AK, G MM, G S, Malla R. Reactive oxygen species in cancer survival. Biomark Insights. 2018;13:1177271918755391. doi:10.1177/1177271918755391
Tang JLY, Moonshi SS, Ta HT. Nanoceria strategies for cancer treatment. Cell Mol Life Sci. 2023;80(2):46. doi:10.1007/s00018-023-04694-y
Shuja A, Abubakar M, Shahbaz MN, Shahid S, Mukhtiar M. Nano enzymes in diagnosis and treatment of GIT cancer. Dev Med Life Sci. 2024;1(1):32–41. doi:10.69750/dmls.01.01.015
Li Q, Wu T, Fan X, Guo X, Jiang W, Fan K. Multifaceted nanozymes for synergistic antitumor therapy. Mater Des. 2022;224:111430. doi:10.1016/j.matdes.2022.111430
Henderson E, Huynh G, Wilson K, Plebanski M, Corrie S. Nanoparticles for ovarian cancer detection and imaging. Biomedicines. 2021;9(11):1554. doi:10.3390/biomedicines9111554
Shuja N. Nanotechnology in cancer diagnosis and treatment. Dev Med Life Sci. 2024;1(1):1. doi:10.69750/dmls.01.01.032
Ge H, Du J, Zheng J, Xu N, Yao Q, Long S, et al. MoS₂-based sonosensitizer reversing resistant ovarian tumors. Chem Eng J. 2022;446:137040. doi:10.1016/j.cej.2022.137040
Yang Z, Guo J, Wang L, Zhang J, Ding L, Liu H, et al. Nanozyme-enhanced electrochemical biosensors. Small. 2024;20(14):2307815. doi:10.1002/smll.202307815
Lv J, Yue R, Liu H, Du H, Lu C, Zhang C, et al. Enzyme-activated nanomaterials for MRI and tumor therapy. Coord Chem Rev. 2024;510:215842. doi:10.1016/j.ccr.2024.215842
Hassan FS, El-Fakharany EM, El-Maradny YA, Saleh AK, El-Sayed MH, Mazi W, et al. Microbial enzymes in cancer therapy. Int J Biol Macromol. 2024;277:134535. doi:10.1016/j.ijbiomac.2024.134535
Yang Y, Huang Q, Xiao Z, Liu M, Zhu Y, Chen Q, et al. Nanomaterial-based biosensors for early ovarian cancer diagnosis. Mater Today Bio. 2022;13:100218. doi:10.1016/j.mtbio.2022.100218
Khan AS, Sahu SK, Dash SK, Mishra T, Padhan AR, Padhan D, et al. Nanozymes for biosensing and theranostics. Chem Biodivers. 2024;21(10):e202401326. doi:10.1002/cbdv.202401326
Torres-Herrero B, Armenia I, Ortiz C, de la Fuente JM, Betancor L, Grazú V. Nanomaterials in enzyme therapy. J Control Release. 2024;372:619–47. doi:10.1016/j.jconrel.2024.06.035
Tang L, Li J, Pan T, Yin Y, Mei Y, Xiao Q, et al. Carbon nanoplatforms for cancer therapy and diagnosis. Theranostics. 2022;12(5):2290–321. doi:10.7150/thno.69628
Jia X, Wang Y, Qiao Y, Jiang X, Li J. Redox metabolism regulation using nanomaterials. Chem Soc Rev. 2024;53(23):11590–656. doi:10.1039/D4CS00404C
Wu X, Li Y, Wen M, Xie Y, Zeng K, Liu YN, et al. Nanocatalysts modulating antitumor immunity. Chem Soc Rev. 2024;53(5):2643–92. doi:10.1039/D3CS00673E
Andoh V, Ocansey DKW, Naveed H, Wang N, Chen L, Chen K, et al. Nanocomposites in cancer diagnosis and treatment. Int J Nanomedicine. 2024;19:6099–126. doi:10.2147/IJN.S471360
Chen M, Xu T, Song L, Sun T, Xu Z, Zhao Y, et al. Nanotechnology-based gas delivery system in cancer. Theranostics. 2024;14(14):5461–91. doi:10.7150/thno.98884
Shin J, Kang N, Kim B, Hong H, Yu L, Kim J, et al. One-dimensional nanomaterials for cancer therapy and diagnosis. Chem Soc Rev. 2023;52(13):4488–514. doi:10.1039/D2CS00840H
Li R, Qian J, Zhu X, Tao T, Zhou X. Nanomolecular machines in precision medicine for neoplastic diseases. Biochim Biophys Acta Mol Basis Dis. 2024;1870(8):167486. doi:10.1016/j.bbadis.2024.167486
Liu S, Liu Z, Lei H, Miao YB, Chen J. Programmable nanomodulators for precision tumor metabolism therapy. Adv Healthc Mater. 2024;2403019. doi:10.1002/adhm.202403019
Mohajer F, Mirhosseini-Eshkevari B, Ahmadi S, Ghasemzadeh MA, Mohammadi Ziarani G, Badiei A, et al. Advanced nanosystems for cancer therapeutics. ACS Appl Nano Mater. 2023;6(9):7123–49. doi:10.1021/acsanm.3c00859
Liu Y, Jia D, Li L, Wang M. Nanomedicine and biomaterials for endometrial regeneration. Int J Nanomedicine. 2024;19:8285–308. doi:10.2147/IJN.S473259
Chen P, Zhang P, Shah NH, Cui Y, Wang Y. Inorganic sonosensitizers for sonodynamic therapy. Int J Mol Sci. 2023;24(15):12001. doi:10.3390/ijms241512001
Fu J, Cai W, Pan S, Chen L, Fang X, Shang Y, et al. Nanotechnology applications in sepsis. ACS Nano. 2024;18(11):7711–38. doi:10.1021/acsnano.3c10458
Desai N, Rana D, Pande S, Salave S, Giri J, Benival D, et al. Membrane-coated nanosystems in cancer theranostics. Pharmaceutics. 2023;15(6):1677. doi:10.3390/pharmaceutics15061677
Zhao J, Xia K, He P, Wei G, Zhou X, Zhang X. Nucleic acid-based cancer biomarkers and biosensors. Coord Chem Rev. 2023;497:215456. doi:10.1016/j.ccr.2023.215456
Budiman A, Rusdin A, Wardhana YW, Puluhulawa LE, Cindana Mo’o FR, Thomas N, et al. Functionalized mesoporous silica enhancing antioxidant activity. Antioxidants. 2024;13(8):936. doi:10.3390/antiox13080936
Nasir A, Rehman MU, Khan T, Husn M, Khan M, Khan A, et al. Nanotechnology-assisted photodynamic therapy for neurological disorders. Artif Cells Nanomed Biotechnol. 2024;52(1):84–103. doi:10.1080/21691401.2024.2304814
Li J, Zhao J, Tan T, Liu M, Zeng Z, Zeng Y, et al. Nanoparticle drug delivery for glioma. Int J Nanomedicine. 2020;15:2563–82. doi:10.2147/IJN.S243223
Gharehbaba AM, Omidi Y, Barar J, Eskandani M, Adibkia K. Janus nanoparticles in cancer therapy. TrAC Trends Anal Chem. 2024;178:117822. doi:10.1016/j.trac.2024.117822
Xu S, Xu H, Wang W, Li S, Li H, Li T, et al. Role of collagen in cancer. J Transl Med. 2019;17(1):309. doi:10.1186/s12967-019-2058-1
Sun L, Liu H, Ye Y, Lei Y, Islam R, Tan S, et al. Smart nanoparticles for cancer therapy. Signal Transduct Target Ther. 2023;8(1):418. doi:10.1038/s41392-023-01642-x
Doghish AS, El-Husseiny AA, Abdelmaksoud NM, El-Mahdy HA, Elsakka EGE, Abdel Mageed SS, et al. Signaling pathways and miRNAs in esophageal cancer. Pathol Res Pract. 2023;246:154529. doi:10.1016/j.prp.2023.154529
Ouyang J, Xie A, Zhou J, Liu R, Wang L, Liu H, et al. Minimally invasive nanomedicine for therapy and imaging. Chem Soc Rev. 2022;51(12):4996–5041. doi:10.1039/D1CS01148K
Huang H, Zheng Y, Chang M, Song J, Xia L, Wu C, et al. Ultrasound-based micro/nanosystems in biomedicine. Chem Rev. 2024;124(13):8307–72. doi:10.1021/acs.chemrev.4c00009
Driva TS, Schatz C, Haybaeck J. PI3K/AKT/mTOR pathway in endometriosis-associated ovarian carcinoma. Biomolecules. 2023;13(8):1253. doi:10.3390/biom13081253
Xiang X, Pang H, Ma T, Du F, Li L, Huang J, et al. Microbubble destruction with Fe-MOF enzyme-mimic nanoparticles. J Nanobiotechnology. 2021;19(1):92. doi:10.1186/s12951-021-00835-2
Hu Q, Zuo H, Hsu JC, Zeng C, Tian Z, Sun Z, et al. Nanomedicine to combat resistance to energy-based therapies. Adv Mater. 2024;36(5):2308286. doi:10.1002/adma.202308286
Wang K, Mao W, Song X, Chen M, Feng W, Peng B, et al. Reactive X-species nanomedicine. Chem Soc Rev. 2023;52(20):6957–7035. doi:10.1039/D2CS00435F
Sharma M, Bakshi AK, Mittapelly N, Gautam S, Marwaha D, Rai N, et al. Innovative strategies to overcome cancer drug resistance. J Control Release. 2022;346:43–70. doi:10.1016/j.jconrel.2022.04.007
Li X, Ma Z, Wang H, Shi Q, Xie Z, Yu J. Copper-based MOFs for cancer diagnosis and therapy. Coord Chem Rev. 2024;514:215943. doi:10.1016/j.ccr.2024.215943
Bravo-Vázquez LA, Méndez-García A, Rodríguez AL, Sahare P, Pathak S, Banerjee A, et al. Nanotechnologies for miRNA-based cancer therapeutics. Front Bioeng Biotechnol. 2023;11:1208547. doi:10.3389/fbioe.2023.1208547
Chang M, Dong C, Huang H, Ding L, Feng W, Chen Y. Nanobiomimetic medicine. Adv Funct Mater. 2022;32(32):2204791. doi:10.1002/adfm.202204791
Lewandowska H, Wójciuk K, Karczmarczyk U. Metal nanozymes in cellular homeostasis regulation. Appl Sci. 2021;11(19):9019. doi:10.3390/app11199019
Wang M, Liu H, Fan K. Signal amplification strategies in nanozyme biosensors. Small Methods. 2023;7(11):2301049. doi:10.1002/smtd.202301049
Xiong H, Hu P, Zhang M, Li Y, Ning Z. Nanozyme-enhanced lateral flow assays. Microchem J. 2024;206:111602. doi:10.1016/j.microc.2024.111602
Zhang D, Wang G, Ma N, Yuan Z, Dong Y, Huang X, et al. Cell membrane-based biomimetic nano-delivery systems. Adv Ther. 2024;7(2):2300304. doi:10.1002/adtp.202300304
Chen Z, Chen L, Lyu TD, Weng S, Xie Y, Jin Y, et al. Targeted mitochondrial nanomaterials. Acta Biomater. 2024;186:1–29. doi:10.1016/j.actbio.2024.08.008
Xu G, Li J, Zhang S, Cai J, Deng X, Wang Y, et al. Two-dimensional biomaterials for tumor microenvironment immunotherapy. Nano TransMed. 2024;3:100045. doi:10.1016/j.ntm.2024.100045
Son MH, Park SW, Sagong HY, Jung YK. Electrochemical and optical biosensors for cancer biomarkers. BioChip J. 2023;17(1):44–67. doi:10.1007/s13206-022-00089-6















