The Transformative Role of Nanoenzymes in the Diagnosis, Targeted Treatment, and Prognosis of Ovarian Cancer. A comprehensive review
Role of nano enzyme in diagnosis, treatment and prognosis of ovarian cancer
DOI:
https://doi.org/10.69750/dmls.01.010.076Keywords:
Ovarian cancer, nanoenzymes, biosensors, nanotechnology, targeted therapyAbstract
Ovarian cancer is one of the most aggressive and deadly gynaecological malignancies and remains frequently diagnosed at advanced stages because of its asymptomatic progression and the inherent limitations of current diagnostic tests. Nanoenzymes (a class of nanotechnology-based artificial enzymes) have great promise in addressing these challenges. Nanoenzymes greatly improve diagnostic sensitivity and specificity in biosensors including optical and electrochemical systems, with real-time and high-precision detection of key biomarkers such as CA-125, HE4, and mesothelin. The high accuracy of optical biosensors, including fluorescence and surface plasmon resonance (SPR) based technologies, for early-stage diagnosis, and the cost-effective, portable, and ultra-low detection limits of electrochemical biosensors make them attractive alternatives. Nanoenzyme-based drug delivery systems like liposomes, polymeric micelles, and Nanocapsules improve therapeutic outcomes by allowing targeted drug transport to tumor tissues, reducing systemic toxicity, and overcoming drug resistance in treatment. PEGylated liposomal doxorubicin (Doxil), a liposomal formulation, has been shown to have enhanced efficacy in platinum-resistant ovarian cancer, with reduced adverse effects. Further theranostic applications of metallic nanoparticles such as gold and iron oxide can be realized using targeted therapy and real-time imaging. These advancements come with their challenges, however, including biological barriers, systemic toxicity, and scalability before clinical translation. Interdisciplinary research, clinical validation, and the creation of regulatory frameworks for safety and efficacy are needed for future progress. Nanoenzymes offer promise to revolutionize the diagnosis and treatment of ovarian cancer with their potential to facilitate early detection, therapeutic precision, and patient outcome while filling the huge gaps in current clinical approaches.
Downloads
References
Shahid S, Khan A, Shahid W, Rehan M, Asif R, Nisar H, et al. Nanoenzymes: A Radiant Hope for the Early Diagnosis and Effective Treatment of Breast and Ovarian Cancers. Int J Nanomedicine. 2024;19:5813-35.doi: 10.2147/ijn.S460712
Deshwal A, Saxena K, Sharma G, Rajesh, Sheikh FA, Seth CS, et al. Nanozymes: A comprehensive review on emerging applications in cancer diagnosis and therapeutics. Int J Biol Macromol. 2024;256(Pt 1):128272.doi: 10.1016/j.ijbiomac.2023.128272
He G, Mei C, Chen C, Liu X, Wu J, Deng Y, et al. Application and progress of nanozymes in antitumor therapy. International Journal of Biological Macromolecules. 2024;265:130960.doi: https://doi.org/10.1016/j.ijbiomac.2024.130960
P. N. N, Mehla S, Begum A, Chaturvedi HK, Ojha R, Hartinger C, et al. Smart Nanozymes for Cancer Therapy: The Next Frontier in Oncology. Advanced Healthcare Materials. 2023;12(25):2300768.doi: https://doi.org/10.1002/adhm.202300768
Shahid S, Khan A, Shahid W, Rehan M, Asif R, Nisar H, et al. Nanoenzymes: A Radiant Hope for the Early Diagnosis and Effective Treatment of Breast and Ovarian Cancers. International Journal of Nanomedicine. 2024;19:5813-35.doi: 10.2147/IJN.S460712
Vengurlekar JR, Bhaware BB, Prasad T, Sarkar J. Nanomedicine’s Transformative Role in Advancing Cancer Treatment. In: Gautam V, Kumar R, Das Manandhar K, Kamble SC, editors. Nanomedicine: Innovations, Applications, and Breakthroughs in the Quest for Health and Medicine's Future. Cham: Springer Nature Switzerland; 2024. p. 59-105.doi: 10.1007/978-3-031-72467-1_4
Zhu X, Xu N, Zhang L, Wang D, Zhang P. Novel design of multifunctional nanozymes based on tumor microenvironment for diagnosis and therapy. European Journal of Medicinal Chemistry. 2022;238:114456.doi: https://doi.org/10.1016/j.ejmech.2022.114456
Yu Y, Zhao W, Yuan X, Li R. Progress and prospects of nanozymes for enhanced antitumor therapy. Frontiers in Chemistry. 2022;10.doi: 10.3389/fchem.2022.1090795
Kaur P, Singh SK, Mishra MK, Singh S, Singh R. Nanotechnology for boosting ovarian cancer immunotherapy. Journal of Ovarian Research. 2024;17(1):202.doi: 10.1186/s13048-024-01507-z
Xiong R, Zhu X, Zhao J, Ling G, Zhang P. Nanozymes-Mediated Cascade Reaction System for Tumor-Specific Diagnosis and Targeted Therapy. Small Methods. 2024;8(10):2301676.doi: https://doi.org/10.1002/smtd.202301676
Singh R, Sharma A, Saji J, Umapathi A, Kumar S, Daima HK. Smart nanomaterials for cancer diagnosis and treatment. Nano Convergence. 2022;9(1):21.doi: 10.1186/s40580-022-00313-x
Wu Y, Darland DC, Zhao JX. Nanozymes—Hitting the Biosensing “Target”. Sensors [Internet]. 2021; 21(15).doi: 10.3390/s21155201
Tian H, Zhang T, Qin S, Huang Z, Zhou L, Shi J, et al. Enhancing the therapeutic efficacy of nanoparticles for cancer treatment using versatile targeted strategies. Journal of Hematology & Oncology. 2022;15(1):132.doi: 10.1186/s13045-022-01320-5
Xiao Q, Zhang Y, Zhao A, Duan Z, Yao J. Application and development of nanomaterials in the diagnosis and treatment of esophageal cancer. Frontiers in Bioengineering and Biotechnology. 2023;11.doi: 10.3389/fbioe.2023.1268454
Tavares V, Marques IS, Melo IG, Assis J, Pereira D, Medeiros R. Paradigm Shift: A Comprehensive Review of Ovarian Cancer Management in an Era of Advancements. International Journal of Molecular Sciences [Internet]. 2024; 25(3).doi: 10.3390/ijms25031845
Chauhan DS, Prasad R, Srivastava R, Jaggi M, Chauhan SC, Yallapu MM. Comprehensive Review on Current Interventions, Diagnostics, and Nanotechnology Perspectives against SARS-CoV-2. Bioconjugate Chemistry. 2020;31(9):2021-45.doi: 10.1021/acs.bioconjchem.0c00323
Andreani T, Cheng R, Elbadri K, Ferro C, Menezes T, dos Santos MR, et al. Natural compounds-based nanomedicines for cancer treatment: Future directions and challenges. Drug Delivery and Translational Research. 2024;14(10):2845-916.doi: 10.1007/s13346-024-01649-z
Zhang S, Zhang R, Yan X, Fan K. Nanozyme‐Based Artificial Organelles: An Emerging Direction for Artificial Organelles. Small. 2022;18.doi: 10.1002/smll.202202294
Akpe V, Shiddiky MJA, Kim TH, Brown CL, Yamauchi Y, Cock IE. Cancer biomarker profiling using nanozyme containing iron oxide loaded with gold particles. Journal of The Royal Society Interface. 2020;17(167):20200180.doi: 10.1098/rsif.2020.0180
Kashyap BK, Singh VV, Solanki MK, Kumar A, Ruokolainen J, Kesari KK. Smart Nanomaterials in Cancer Theranostics: Challenges and Opportunities. ACS Omega. 2023;8(16):14290-320.doi: 10.1021/acsomega.2c07840
Abolhasani Zadeh F, Shahhosseini E, Rasoolzadegan S, Özbolat G, Farahbod F. Au nanoparticles in the diagnosis and treatment of ovarian cancer: A new horizon in the personalized medicine. Nanomedicine Research Journal. 2022;7(1):1-18.doi: 10.22034/nmrj.2022.01.001
Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial Reactive Oxygen Species (ROS) and ROS-Induced ROS Release. Physiological Reviews. 2014;94(3):909-50.doi: 10.1152/physrev.00026.2013
Kumari S, Badana AK, G MM, G S, Malla R. Reactive Oxygen Species: A Key Constituent in Cancer Survival. Biomarker Insights. 2018;13:1177271918755391.doi: 10.1177/1177271918755391
Tang JLY, Moonshi SS, Ta HT. Nanoceria: an innovative strategy for cancer treatment. Cellular and Molecular Life Sciences. 2023;80(2):46.doi: 10.1007/s00018-023-04694-y
Shuja A, Abubakar M, Shahbaz MN, Shahid S, Mukhtiar M. Role of Nano Enzyme in Diagnosis, Prognosis and Treatment of Gastrointestinal Tract (GIT) Cancer: Nano Enzymes in Diagnosis, Prognosis, and Treatment of GIT Cancer. DEVELOPMENTAL MEDICO-LIFE-SCIENCES. 2024;1(1):32-41.doi: 10.69750/dmls.01.01.015
Li Q, Wu T, Fan X, Guo X, Jiang W, Fan K. Multifaceted nanozymes for synergistic antitumor therapy: A review. Materials & Design. 2022;224:111430.doi: https://doi.org/10.1016/j.matdes.2022.111430
Henderson E, Huynh G, Wilson K, Plebanski M, Corrie S. The Development of Nanoparticles for the Detection and Imaging of Ovarian Cancers. Biomedicines [Internet]. 2021; 9(11).doi: 10.3390/biomedicines9111554
Shuja N. Nanotechnology: Revolutionizing Cancer Diagnosis and Treatment: Early Cancer Detection and Treatment. DEVELOPMENTAL MEDICO-LIFE-SCIENCES. 2024;1(1):1.doi: 10.69750/dmls.01.01.032
Ge H, Du J, Zheng J, Xu N, Yao Q, Long S, et al. Effective treatment of cisplatin-resistant ovarian tumors with a MoS2-based sonosensitizer and nanoenzyme capable of reversing the resistant-microenvironment and enhancing ferroptosis and apoptosis. Chemical Engineering Journal. 2022;446:137040.doi: https://doi.org/10.1016/j.cej.2022.137040
Yang Z, Guo J, Wang L, Zhang J, Ding L, Liu H, et al. Nanozyme-Enhanced Electrochemical Biosensors: Mechanisms and Applications. Small. 2024;20(14):2307815.doi: https://doi.org/10.1002/smll.202307815
Lv J, Yue R, Liu H, Du H, Lu C, Zhang C, et al. Enzyme-activated nanomaterials for MR imaging and tumor therapy. Coordination Chemistry Reviews. 2024;510:215842.doi: https://doi.org/10.1016/j.ccr.2024.215842
Hassan FS, El-Fakharany EM, El-Maradny YA, Saleh AK, El-Sayed MH, Mazi W, et al. Comprehensive insight into exploring the potential of microbial enzymes in cancer therapy: Progress, challenges, and opportunities: A review. International Journal of Biological Macromolecules. 2024;277:134535.doi: https://doi.org/10.1016/j.ijbiomac.2024.134535
Yang Y, Huang Q, Xiao Z, Liu M, Zhu Y, Chen Q, et al. Nanomaterial-based biosensor developing as a route toward in vitro diagnosis of early ovarian cancer. Materials Today Bio. 2022;13:100218.doi: https://doi.org/10.1016/j.mtbio.2022.100218
Khan AS, Sahu SK, Dash SK, Mishra T, Padhan AR, Padhan D, et al. The Exploration of Nanozymes for Biosensing of Pathological States Tailored to Clinical Theranostics. Chemistry & Biodiversity. 2024;21(10):e202401326.doi: https://doi.org/10.1002/cbdv.202401326
Torres-Herrero B, Armenia I, Ortiz C, de la Fuente JM, Betancor L, Grazú V. Opportunities for nanomaterials in enzyme therapy. Journal of Controlled Release. 2024;372:619-47.doi: https://doi.org/10.1016/j.jconrel.2024.06.035
Tang L, Li J, Pan T, Yin Y, Mei Y, Xiao Q, et al. Versatile carbon nanoplatforms for cancer treatment and diagnosis: strategies, applications and future perspectives. Theranostics. 2022;12(5):2290-321.doi: 10.7150/thno.69628
Jia X, Wang Y, Qiao Y, Jiang X, Li J. Nanomaterial-based regulation of redox metabolism for enhancing cancer therapy. Chemical Society Reviews. 2024;53(23):11590-656.doi: 10.1039/D4CS00404C
Wu X, Li Y, Wen M, Xie Y, Zeng K, Liu Y-N, et al. Nanocatalysts for modulating antitumor immunity: fabrication, mechanisms and applications. Chemical Society Reviews. 2024;53(5):2643-92.doi: 10.1039/D3CS00673E
Andoh V, Ocansey DKW, Naveed H, Wang N, Chen L, Chen K, et al. The Advancing Role of Nanocomposites in Cancer Diagnosis and Treatment. International Journal of Nanomedicine. 2024;19(null):6099-126.doi: 10.2147/IJN.S471360
Chen M, Xu T, Song L, Sun T, Xu Z, Zhao Y, et al. Nanotechnology based gas delivery system: a "green" strategy for cancer diagnosis and treatment. Theranostics. 2024;14(14):5461-91.doi: 10.7150/thno.98884
Shin J, Kang N, Kim B, Hong H, Yu L, Kim J, et al. One-dimensional nanomaterials for cancer therapy and diagnosis. Chemical Society Reviews. 2023;52(13):4488-514.doi: 10.1039/D2CS00840H
Li R, Qian J, Zhu X, Tao T, Zhou X. Nanomolecular machines: Pioneering precision medicine for neoplastic diseases through advanced diagnosis and treatment. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease. 2024;1870(8):167486.doi: https://doi.org/10.1016/j.bbadis.2024.167486
Liu S, Liu Z, Lei H, Miao Y-B, Chen J. Programmable Nanomodulators for Precision Therapy, Engineering Tumor Metabolism to Enhance Therapeutic Efficacy. Advanced Healthcare Materials.n/a(n/a):2403019.doi: https://doi.org/10.1002/adhm.202403019
Mohajer F, Mirhosseini-Eshkevari B, Ahmadi S, Ghasemzadeh MA, Mohammadi Ziarani G, Badiei A, et al. Advanced Nanosystems for Cancer Therapeutics: A Review. ACS Applied Nano Materials. 2023;6(9):7123-49.doi: 10.1021/acsanm.3c00859
Liu Y, Jia D, Li L, Wang M. Advances in Nanomedicine and Biomaterials for Endometrial Regeneration: A Comprehensive Review. International Journal of Nanomedicine. 2024;19(null):8285-308.doi: 10.2147/IJN.S473259
Chen P, Zhang P, Shah NH, Cui Y, Wang Y. A Comprehensive Review of Inorganic Sonosensitizers for Sonodynamic Therapy. International Journal of Molecular Sciences [Internet]. 2023; 24(15).doi: 10.3390/ijms241512001
Fu J, Cai W, Pan S, Chen L, Fang X, Shang Y, et al. Developments and Trends of Nanotechnology Application in Sepsis: A Comprehensive Review Based on Knowledge Visualization Analysis. ACS Nano. 2024;18(11):7711-38.doi: 10.1021/acsnano.3c10458
Desai N, Rana D, Pande S, Salave S, Giri J, Benival D, et al. “Bioinspired” Membrane-Coated Nanosystems in Cancer Theranostics: A Comprehensive Review. Pharmaceutics [Internet]. 2023; 15(6).doi: 10.3390/pharmaceutics15061677
Zhao J, Xia K, He P, Wei G, Zhou X, Zhang X. Recent advances of nucleic acid-based cancer biomarkers and biosensors. Coordination Chemistry Reviews. 2023;497:215456.doi: https://doi.org/10.1016/j.ccr.2023.215456
Budiman A, Rusdin A, Wardhana YW, Puluhulawa LE, Cindana Mo’o FR, Thomas N, et al. Exploring the Transformative Potential of Functionalized Mesoporous Silica in Enhancing Antioxidant Activity: A Comprehensive Review. Antioxidants [Internet]. 2024; 13(8).doi: 10.3390/antiox13080936
Nasir A, Rehman MU, Khan T, Husn M, Khan M, Khan A, et al. Advances in nanotechnology-assisted photodynamic therapy for neurological disorders: a comprehensive review. Artificial Cells, Nanomedicine, and Biotechnology. 2024;52(1):84-103.doi: 10.1080/21691401.2024.2304814
Li J, Zhao J, Tan T, Liu M, Zeng Z, Zeng Y, et al. Nanoparticle Drug Delivery System for Glioma and Its Efficacy Improvement Strategies: A Comprehensive Review. International Journal of Nanomedicine. 2020;15(null):2563-82.doi: 10.2147/IJN.S243223
Gharehbaba AM, Omidi Y, Barar J, Eskandani M, Adibkia K. Innovative horizons in cancer therapy, imaging, and sensing with Janus nanoparticles: A comprehensive review. TrAC Trends in Analytical Chemistry. 2024;178:117822.doi: https://doi.org/10.1016/j.trac.2024.117822
Xu S, Xu H, Wang W, Li S, Li H, Li T, et al. The role of collagen in cancer: from bench to bedside. Journal of Translational Medicine. 2019;17(1):309.doi: 10.1186/s12967-019-2058-1
Sun L, Liu H, Ye Y, Lei Y, Islam R, Tan S, et al. Smart nanoparticles for cancer therapy. Signal Transduction and Targeted Therapy. 2023;8(1):418.doi: 10.1038/s41392-023-01642-x
Doghish AS, El-Husseiny AA, Abdelmaksoud NM, El-Mahdy HA, Elsakka EGE, Abdel Mageed SS, et al. The interplay of signaling pathways and miRNAs in the pathogenesis and targeted therapy of esophageal cancer. Pathology - Research and Practice. 2023;246:154529.doi: https://doi.org/10.1016/j.prp.2023.154529
Ouyang J, Xie A, Zhou J, Liu R, Wang L, Liu H, et al. Minimally invasive nanomedicine: nanotechnology in photo-/ultrasound-/radiation-/magnetism-mediated therapy and imaging. Chemical Society Reviews. 2022;51(12):4996-5041.doi: 10.1039/D1CS01148K
Huang H, Zheng Y, Chang M, Song J, Xia L, Wu C, et al. Ultrasound-Based Micro-/Nanosystems for Biomedical Applications. Chemical Reviews. 2024;124(13):8307-472.doi: 10.1021/acs.chemrev.4c00009
Driva TS, Schatz C, Haybaeck J. Endometriosis-Associated Ovarian Carcinomas: How PI3K/AKT/mTOR Pathway Affects Their Pathogenesis. Biomolecules [Internet]. 2023; 13(8).doi: 10.3390/biom13081253
Xiang X, Pang H, Ma T, Du F, Li L, Huang J, et al. Ultrasound targeted microbubble destruction combined with Fe-MOF based bio-/enzyme-mimics nanoparticles for treating of cancer. Journal of Nanobiotechnology. 2021;19(1):92.doi: 10.1186/s12951-021-00835-2
Hu Q, Zuo H, Hsu JC, Zeng C, Tian Z, Sun Z, et al. The Emerging Landscape for Combating Resistance Associated with Energy-Based Therapies via Nanomedicine. Advanced Materials. 2024;36(5):2308286.doi: https://doi.org/10.1002/adma.202308286
Wang K, Mao W, Song X, Chen M, Feng W, Peng B, et al. Reactive X (where X = O, N, S, C, Cl, Br, and I) species nanomedicine. Chemical Society Reviews. 2023;52(20):6957-7035.doi: 10.1039/D2CS00435F
Sharma M, Bakshi AK, Mittapelly N, Gautam S, Marwaha D, Rai N, et al. Recent updates on innovative approaches to overcome drug resistance for better outcomes in cancer. Journal of Controlled Release. 2022;346:43-70.doi: https://doi.org/10.1016/j.jconrel.2022.04.007
Li X, Ma Z, Wang H, Shi Q, Xie Z, Yu J. Research progress of copper-based metal–organic frameworks for cancer diagnosis and therapy. Coordination Chemistry Reviews. 2024;514:215943.doi: https://doi.org/10.1016/j.ccr.2024.215943
Bravo-Vázquez LA, Méndez-García A, Rodríguez AL, Sahare P, Pathak S, Banerjee A, et al. Applications of nanotechnologies for miRNA-based cancer therapeutics: current advances and future perspectives. Frontiers in Bioengineering and Biotechnology. 2023;11.doi: 10.3389/fbioe.2023.1208547
Chang M, Dong C, Huang H, Ding L, Feng W, Chen Y. Nanobiomimetic Medicine. Advanced Functional Materials. 2022;32(32):2204791.doi: https://doi.org/10.1002/adfm.202204791
Lewandowska H, Wójciuk K, Karczmarczyk U. Metal Nanozymes: New Horizons in Cellular Homeostasis Regulation. Applied Sciences [Internet]. 2021; 11(19).doi: 10.3390/app11199019
Wang M, Liu H, Fan K. Signal Amplification Strategy Design in Nanozyme-Based Biosensors for Highly Sensitive Detection of Trace Biomarkers. Small Methods. 2023;7(11):2301049.doi: https://doi.org/10.1002/smtd.202301049
Xiong H, Hu P, Zhang M, Li Y, Ning Z. Recent advances of nanozyme-enhanced lateral flow assay sensing in clinic diagnosis. Microchemical Journal. 2024;206:111602.doi: https://doi.org/10.1016/j.microc.2024.111602
Zhang D, Wang G, Ma N, Yuan Z, Dong Y, Huang X, et al. Biomedical Applications of Cell Membrane-Based Biomimetic Nano-Delivery System. Advanced Therapeutics. 2024;7(2):2300304.doi: https://doi.org/10.1002/adtp.202300304
Chen Z, Chen L, Lyu Td, Weng S, Xie Y, Jin Y, et al. Targeted mitochondrial nanomaterials in biomedicine: Advances in therapeutic strategies and imaging modalities. Acta Biomaterialia. 2024;186:1-29.doi: https://doi.org/10.1016/j.actbio.2024.08.008
Xu G, Li J, Zhang S, Cai J, Deng X, Wang Y, et al. Two-dimensional nano-biomaterials in regulating the tumor microenvironment for immunotherapy. Nano TransMed. 2024;3:100045.doi: https://doi.org/10.1016/j.ntm.2024.100045
Son MH, Park SW, Sagong HY, Jung YK. Recent Advances in Electrochemical and Optical Biosensors for Cancer Biomarker Detection. BioChip Journal. 2023;17(1):44-67.doi: 10.1007/s13206-022-00089-6
Downloads
Published
Issue
Section
License
![Creative Commons License](http://i.creativecommons.org/l/by/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution 4.0 International License.
©The Author(s) . Open Access. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/public domain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.